Learning with Non-Positive Semidefinite Kernels

نویسندگان

  • Ingo Mierswa
  • Katharina Morik
چکیده

During the last years, kernel based methods proved to be very successful for many real-world learning problems. One of the main reasons for this success is the efficiency on large data sets which is a result of the fact that kernel methods like Support Vector Machines (SVM) are based on a convex optimization problem. Solving a new learning problem can now often be reduced to the choice of an appropriate kernel function and kernel parameters. However, it can be shown that even the most powerful kernel methods can still fail on quite simple data sets in cases where the inherent feature spaces induced by the used kernel function is not sufficient. In these cases, an explicit feature space transformation or detection of latent variables proved to be more successful. Since such an explicit feature construction is often not feasible for large data sets, the ultimate goal for efficient kernel learning would be the adaptive creation of new and appropriate kernel functions. It can, however, not be guaranteed that such a kernel function still lead to a convex optimization problem for Support Vector Machines. Therefore, we have to enhance the optimization core of the learning method itself before we could use it with arbitrary, i.e. non-positive semidefinite, kernel functions. This article motivates the usage of appropriate feature spaces and discusses the possible consequences leading to non-convex optimization problems. We will show that these new non-convex optimization SVM are at least as accurate as their quadratic programming counterparts on eight real-world benchmark data sets in terms of the generalization performance. They always outperform traditional approaches in terms of the original optimization problem. Additionally, the proposed algorithm is more generic than existing traditional solutions since it will also work for non-positive semidefinite or indefinite kernel functions. Artificial Intelligence Unit Department of Computer Science Technical University of Dortmund E-mail: [email protected], E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support vector machines with indefinite kernels

Training support vector machines (SVM) with indefinite kernels has recently attracted attention in the machine learning community. This is partly due to the fact that many similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the Mercer condition is not satisfied, or the Mercer condition is difficult to verify. Previous work on training SVM with indefinite ke...

متن کامل

Learning with Hypernode Graphs Spectral Learning with Hypernode Graphs Application to Skill Rating for Multiple Players Games∗

The aim of this paper is to propose methods for learning from interactions between groups in networks. For this, we introduce hypernode graphs as a formal tool able to model group interactions. A hypernode graph is a set of weighted binary relations between disjoint sets of nodes. We define Laplacians and kernels for hypernode graphs. And we propose spectral learning algorithms over hypernode g...

متن کامل

A Convex Parametrization of a New Class of Universal Kernel Functions for use in Kernel Learning

We propose a new class of universal kernel functions which admit a linear parametrization using positive semidefinite matrices. These kernels are generalizations of the Sobolev kernel and are defined by piecewise-polynomial functions. The class of kernels is termed “tessellated” as the resulting discriminant is defined piecewise with hyper-rectangular domains whose corners are determined by the...

متن کامل

Correlation Kernels for Support Vector Machines Classification with Applications in Cancer Data

High dimensional bioinformatics data sets provide an excellent and challenging research problem in machine learning area. In particular, DNA microarrays generated gene expression data are of high dimension with significant level of noise. Supervised kernel learning with an SVM classifier was successfully applied in biomedical diagnosis such as discriminating different kinds of tumor tissues. Co...

متن کامل

Multiple Kernel Learning for Fold Recognition

Fold recognition is a key problem in computational biology that involves classifying protein sharing structural similarities into classes commonly known as “folds”. Recently, researchers have developed several efficient kernel based discriminatory methods for fold classification using sequence information. These methods train one-versus-rest binary classifiers using well optimized kernels from ...

متن کامل

Learning low-rank output kernels

Output kernel learning techniques allow to simultaneously learn a vector-valued function and a positive semidefinite matrix which describes the relationships between the outputs. In this paper, we introduce a new formulation that imposes a low-rank constraint on the output kernel and operates directly on a factor of the kernel matrix. First, we investigate the connection between output kernel l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008